Answer:

and

Explanation:
Given:
- first charge,

- second charge,

- position of first charge,

- position of second charge,

Now since there are only 2 charges and of the same sign so they repel each other. This repulsion will be zero at some point on the line joining the charges.
<u>Now, according to the condition, electric field will be zero where the effects of field due to both the charges is equal.</u>

- since first charge is greater than the second charge so we may get a point to the right of the second charge and the distance between the two charges is 1 meter.





Since we have assumed that the we may get a point to the right of second charge so we calculate with respect to the origin.

and

Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²
Answer:
= 4.38 × 10³⁴kgm²/s
Explanation:
Given that,
mass of moon m = 9.5 × 10²²kg
Orbital radius r = 4.28 × 10⁵km
Orbital period T = 28.9days
T = 28.9 × 24 × 60 × 60
= 2,496,960s
Angular momentum of the moon about the planet
L = mvr
L = mr²w

The most crucial information would be its atomic number.