<u>We are given:</u>
Mass of the Steelhead(m) = 9 kg
Velocity of the Steelhead(v) = 16 m/s
<u>Calculating the Kinetic Energy:</u>
KE = 1/2mv²
replacing the variables
KE = 1/2 * 9 * (16)²
KE = 1152 Joules
Current flows from High Potential (Positive) to Low potential (Negative)
So, option D is your answer!
Hope this helps!
Answer:
A. The applied force should be the same size as the friction force
Explanation:
Whenever we apply a force to an object it moves if the force applied to that object is unbalanced and there is no force or a lesser force to counter it. According to Newton's Second Law of motion, when an unbalanced force is applied to an object it produces an acceleration in the object in its own direction. So, the two forces acting on this box are the frictional force and the applied force in horizontal direction. In order to move the box at constant speed, the applied force must first, overcome the frictional force, so the object can start its motion. Since, the motion has constant velocity, it means no acceleration. So, the force must be balanced in order to avoid acceleration as a consequence of Newton's Second Law of motion. Therefore, the correction in this case will be:
<u>A. The applied force should be the same size as the friction force</u>
Answer:
the magnetic field can be used to make electricity
Explanation:
Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current. Electricity generators essentially convert kinetic energy (the energy of motion) into electrical energy
Answer:
Answer
Correct option is
A
5×10
−6
tesla
I=5A
x=0.2m
Magnetic field at a distance 0.2 m away from the wire.
B=
2πx
μ
0
I
=
2π×0.2
4π×10
−7
×5
=10×5×10
−7
=5×10
−6
tesla