Given teh equation adn the heat of reaction, reaction 2's heat of reaction can be obtained by simply multiplying teh heat of reaction of 1 by 3. The final answer is -6129 kJ.
Answer:
Energy is transferred from one object to another when a reaction takes place.
Explanation:
Energy comes in many forms and can be transferred from one object to another as heat, light, or motion, to name a few.
The answer could be It is a well known fact that energy can neither be created and nor be destroyed but can be transformed from one form to another.
Now talking about your example in a typical light bulb electrical energy is converted into light energy and heat energy. Now when the electric current flows through the conductor/filament in the light bulb,this would cause vibrations and the free ions are more likely to go to an higher energy level,and when the ions come back to their original state,the difference in the two energy levels is usually emitted as a photon,thus light energy is obtained and the heat energy is the energy dissipated as a result of flow of electricity through the conductor.
Anything that gets transformed into light energy or in better words ElectroMagnetic Energy would be a result of this.
The chemical formula of Iron (III) Sulfide is FeSO3. This element or compound has another name which is <span>ferric sulfide or sesquisulfide.</span>
Answer:
333.7g of antifreeze
Explanation:
Freezing point depression in a solvent (In this case, water) occurs by the addition of a solute. The law is:
ΔT = Kf × m × i
Where:
ΔT is change in temperature (0°C - -20°C = 20°C)
Kf is freezing point depression constant (1.86°C / m)
m is molality of solution (moles solute / 0.5 kg solvent -500g water-)
i is Van't Hoff factor (1, assuming antifreeze is ethylene glycol -C₂H₄(OH)₂)
Replacing:
20°C = 1.86°C / m × moles solute / 0.5 kg solvent × 1
5.376 = moles solute
As molar mass of ethylene glycol is 62.07g/mol:
5.376 moles × (62.07g / 1mol) = <em>333.7g of antifreeze</em>.
Answer:
Answers in explanation.
Explanation:
30. A (A chemical changes changes the chemical properties)
31. C (rusting is an example of a chemical change
32. B (A reaction requires energy, so some energy will be expelled)
33. B (Color change is an example of a chemical change)
34. A (The law of the conservation of mass: Mass and Energy cannot be created nor destroyed)