Answer:
Negative
Explanation:
If the box is heading right in the positive direction, the work will be negative. The spring has an opposite force to that of the box.
Hope this helped. :)
To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density
<span>The proper </span><span>battery cable connection when jumping two automotive batteries is : </span><span>(a) negative to negative / positive to positive.
</span><span>Connect the red (positive) cable from the car with the bad battery to the red (positive) on the good battery. </span>
<span>Then connect the black (negative) from the good battery to a grounding point on the other car which should be tightened and metal should be clean.
</span>
<span>Once the car with bad battery has started, the removal of the cable should be in the opposite order. The Red (positive) which was the the First Cable to go on should be the last cable to be taken off.</span>
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.
Answer:
Magnetism is a physical phenomenon that manifests itself in a force acting between magnets or other magnetized or magnetisable objects, and a force acting on moving electric charges, such as in current-carrying cables. The force action takes place by means of a magnetic field, which is generated by the objects themselves or otherwise. There are natural and artificial magnets. All magnets have two poles called the north pole and the south pole. The north pole of one magnet repels the north pole of another magnet and attracts the south pole of another magnet; the same with south poles.