Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
Answer:
Maria
Explanation:
The gravity of the earth is so strong it causes the magnetic pull of anything and everything, this causing the ball to be dropped and pulled towards earth
Answer:
well try talking to him first and being his friend. introduce yourself and try not to be too awkward or shy. can't reltate lol. after that if he really likes you, he'll initiate stuffs ^^
Explanation:
Answer:
Centripetal acceleration of the wheel is
.
Explanation:
We have,
Diameter of a Ferris wheel is 60 m
Radius of the wheel is 30 m
Speed of the wheel is 2.09 m/s
It is required to find the centripetal acceleration of the wheel. The formula of centripetal acceleration is given by :

So, the centripetal acceleration of the wheel is
.