Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in
mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :

Now put all the given values in this formula, we get the molecular weight of a gas.


Therefore, the molecular weight of a gas is, 128.9 g/mole
Temperature change, colour change, releasing gas, bubbles and change in odor
It is actually a Colloid, which means it will never mix and settle.<span />
The experimental density of CO2 at STP is 0.10/0.056=1.78 g/L. The percent error equals to (1.96-1.78)/1.96*100%=9.18%. So the answer is 9.18%.
Answer: 207.2
Explanation:
In imprecise terms, one AMU is the average of the proton rest mass and the neutron rest mass. This is approximately 1.67377 x 10 -27 kilogram (kg), or 1.67377 x 10 -24 gram (g). The mass of an atom in AMU is roughly equal to the sum of the number of protons and neutrons in the nucleus.