1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
2 years ago
15

Intermolecular forces hold

Physics
1 answer:
blagie [28]2 years ago
3 0
I believe Intermolecular forces hold, <span>molecules, ions, and atoms? But I would see if that doesn't sound familiar check it with a site or something?</span>
You might be interested in
Please help,,, question on image
MA_775_DIABLO [31]

Answer:

first you have to

Explanation:

3 0
3 years ago
What is the force of an object with a mass of 30 kg that is free falling?
disa [49]

Answer:

F = 294.3 [N]

Explanation:

To solve this problem we must use Newton's second law which tells us that force is equal to the product of mass by acceleration. It is this particular case the acceleration is due to the gravitational acceleration since the body is in free fall.

Therefore we have:

F = m*g

where:

F  = force [N]

m = mass = 30 [kg]

g = gravity acceleration = 9.81 [m/s^2]

F = 30*9.81

F = 294.3 [N]

4 0
3 years ago
A block with a mass of 9.00 kg is pulled at a constant speed across a horizontal tabletop with a spring scale. The scale reads 6
snow_tiger [21]

Answer:0.69

Explanation:

Coefficient of kinetic friction=f/R=61.8/90=0.69

7 0
3 years ago
An alien spaceship traveling at 0.600 c toward the Earth launches a landing craft. The landing craft travels in the same directi
Arturiano [62]

The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.

To find the answer, we have to know about the Lorentz transformation.

<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>

It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

                  V_x'=0.8c\\V=0.6c\\m=4*10^5kg

  • Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

                  KE=m_0c^2=\frac{mc^2}{1-(\frac{v_x^2}{c^2} )}

  • So, to V_x=(0.8+0.6)c-[\frac{0.6c*(0.8c)^2}{c^2}]=1.016find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame.
  • We have an expression from Lorents transformation for relativistic law of addition of velocities as,

                      V_x'=\frac{V_x-V}{1-\frac{VV_x}{c^2} } \\thus,\\V_x=V_x'(1-\frac{VV_x}{c^2} )+V

  • Substituting values, we get,

          V_x=0.8c(1-\frac{0.8c*0.6c}{c^2} )+0.6c=(0.8c*0.52)+0.6c=1.016c

  • Thus, the KE will be,

              KE=\frac{4*10^5*(3*10^8)^2}{\sqrt{1-\frac{(1.016c)^2}{c^2} } } =\frac{1.2*10^{22}}{0.179}=6.704*10^{22}J

Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.

Learn more about frame of reference here:

brainly.com/question/20897534

SPJ4

3 0
2 years ago
What must be the length of a simple pendulum if its oscillation frequency is to be equal to that of an air-track glider of mass
Anvisha [2.4K]

Answer:

the length of the simple pendulum is 0.25 m.

Explanation:

Given;

mass of the air-track glider, m = 0.25 kg

spring constant, k = 9.75 N/m

let the length of the simple pendulum = L

let the frequency of the air-track glider which is equal to frequency of simple pendulum = F

The oscillation frequency of air-track glider is calculated as;

F = \frac{1}{2\pi } \sqrt{\frac{k}{m} } \\\\F = \frac{1}{2\pi } \sqrt{\frac{9.75}{0.25} } \\\\F = 0.994 \ Hz

The frequency of the simple pendulum is given as;

F = \frac{1}{2\pi} \sqrt{\frac{g}{l} } \\\\2\pi(F) = \sqrt{\frac{g}{l} } \\\\2\pi (0.994) = \sqrt{\frac{9.8}{l} } \\\\6.2455 = \sqrt{\frac{9.8}{l} } \\\\(6.2455)2 = \frac{9.8}{l} \\\\39.006 = \frac{9.8}{l} \\\\l = \frac{9.8}{39.006} \\\\l = 0.25 \ m

Thus, the length of the simple pendulum is 0.25 m.

8 0
2 years ago
Other questions:
  • What is the most advanced degree commonly held by Business, Management, and Administration workers? associate degree bachelor’s
    6·2 answers
  • How does a generator produce an electric current
    8·1 answer
  • The ocean’s surface temperatures vary with time of year and a. latitude. c. seasons. b. longitude. d. moon phases.
    15·2 answers
  • What is an advantage of series circuits?
    15·1 answer
  • Consider a system consisting of two Einstein solids, A and B, each containing N= 10 oscillators, and sharing a total of q= 20 un
    7·1 answer
  • A voltage amplifier with an input resistance of 40k ohms, an output resistance of 100 ohms, and a gain of 300 V/V is connected b
    6·1 answer
  • Knowing that a ball traveled 16 feet in one second, how much will it travel in the first quarter second?
    15·2 answers
  • . Calculate the magnetic force on a current carrying conductor.
    14·1 answer
  • What is an amorphous solid?
    8·1 answer
  • If an object accelerates from rest, with a constant acceleration of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!