1. 100 C
2. Point B to C is the ices heat capacity
3. During the points D to E the bonds of the water molecules build up enough kinetic energy to break their intermolecular bonds (not intra), which can lead to gas.
4. Between points D and E the energy is being released the energy required is equivalent along the line.
5. Between point E and D the water is converting to water (condensation)
6. Energy is being released 2260 j/g
7. Yes, but only under extreme volumetric pressures
8. D and E or B and C
9. Freezing (the water is also becoming less dense)
10. Melting or if water already, absorbtion of energy
11. released.
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer:- Mass of the alloy is 2.8 kg.
Solution:- Mass of Cr in the alloy is 325 g and mass of Fe in the alloy is 2.5 kg. Mass of alloy would be the sum of masses of constituent metals.
Masses of the metals are not in the same units. So, we need to make the units equal. The want answer in kg so let's convert mass of Cr from g to kg.
Since, 1000 g = 1 kg
So, 
= 0.325 kg
Mass of alloy = mass of Cr + mass of Fe
mass of alloy = 0.325 kg + 2.5 kg = 2.825 kg
If we consider significant figures then as per the rules, the answer should not have more than one decimal place.
So, 2.825 kg is round off to 2.8 kg and hence the mass of the alloy is 2.8 kg.
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for reaction of potassium superoxide with carbon dioxide to produce oxygen and potassium carbonate will be:

Answer:
When factories mass produce something it produces smoke. That smoke can be harmful to something called the ozone layer. The ozone layer is part of earth's atmosphere that protects us from the suns burning heat. When that layer is damaged the sun's heat burns through heating up the world and melting ice causing the water levels to rise. All of this can make working conditions less safe, cause more flooding, and have the sun cause cancer.