Given that <span>sample a has a higher melting point than sample
b. Therefore, sample a is a longer chain of a </span><span>fatlike solid substance. It could also be that the bonds present in sample a is much stronger which will require more energy to break. Hope this answers the question.</span>
In dilute solutions, the unit osmolarity is being used. It usually has units milliosmols per liter of solution or mOsmol/L. An osmole defines the number of moles of the solute that would have an effect on the osmotic pressure of the solution. Osmolarity is calculated by the product of the molarity and the number of particles in the solution which is 2 for potassium chloride. We calculate as follows:
Osmolarity = molarity (# of particles)250 mosmol/L ( 1 osmol / 1000 osmol) = x moles / .100 L (2)
x moles = 0.0125 mol KCl
mass KCl = 0.0125 mol KCl ( 39 + 35.5 g/mol) = 0.93125 g KCl
The melting points of sugar and salt are above 20°C.
<h3>What is melting point?</h3>
The melting points of substances refer to the temperature at which solid substances gain enough energy to become liquids.
The room temperature is approximately 20°C. At this temperature, sugar and salt are solids. This means that the melting temperature of both substances is above 20°C.
More specifically, sugar will melt around 180 °C while salt will melt at a temperature slightly above 800 °C.
More on melting points can be found here: brainly.com/question/25777663
#SPJ1
Answer:
Because u would have to find the undercorse of 010-1 witch makes the out of part by 6
Explanation:
Given :
Juan rolled a six-sided number cube 18 times.
The number two occurred four times.
To Find: Juan claimed the experimental probability of rolling a two was approximately 1/9. Why is Juan’s experimental probability incorrect?
Solution:
Total events = number of times cube rolled = 18
Favorable events = The number two occurred four times. = 4
So, Experimental probability of rolling a two was approximately 1/9
The correct answer is :
the purpose of heating the mixture is to accelerate the reaction and mix the reagent.
The explanation:
Many organic reactions are slow and can take an extended period of time to achieve any noticeable effect so heating is often used to increase the rate of reaction. However, many organic compounds have low boiling points and will vaporise upon exposure to such high heat, preventing the reaction from proceeding in full.
so, heating is used. This refers to heating a solution with an attached condenser to prevent reagents from escaping