The given question is incomplete. The complete question is:
The change in entropy is related to the change in the number of moles of gas molecules. Determine the change in moles of gas for each of the reactions and decide if the entropy increases decreases or has little to no change:
A. 
B. 
C. 
D.
Answer: A.
: decreases
B.
: decreases
C.
: no change
D.
: increases
Explanation:
Entropy is defined as the randomness of the system.
Entropy is said to increase when the randomness of the system increase, is said to decrease when the randomness of the system decrease and is said to have no change when the randomness remains same.
In reaction
, as gaseous reactant is changed to solid product, entropy decreases.
In reaction
, as 4 moles of gaseous reactants is changed to 2 moles of gaseous product, entropy decreases.
In reaction
, as 3 moles of gaseous reactants is changed to 3 moles of gaseous product, entropy has no change.
In reaction
, as 1 mole of gaseous reactant is changed to 3 moles of gaseous product, entropy increases.
Answer:
Im sorry i though this was a joke i don't know I'm sorry:
The answer is 25 grams for this question
Answer:
The concentration of the solution is 1.364 molar.
Explanation:
Volume of perchloric acid = 29.1 mL
Mass of the solution = m
Density of the solution = 1.67 g/mL

Percentage of perchloric acid in 48.597 solution :70.5 %
Mass of perchloric acid in 48.597 solution :
= 
Moles of perchloric acid = 
In 29.1 mL of solution water is added and volume was changed to 250 mL.
So, volume of the final solution = 250 mL = 0.250 L (1 mL = 0.001 L)


The concentration of the solution is 1.364 molar.
<span>Not to be confused with tetration.
This article is about volumetric titration. For other uses, see Titration (disambiguation).
Acid–base titration is a quantitative analysis of concentration of an unknown acid or base solution.
Titration, also known as titrimetry,[1] is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte. Since volume measurements play a key role in titration, it is also known as volumetric analysis. A reagent, called the titrant or titrator[2] is prepared as a standard solution. A known concentration and volume of titrant reacts with a solution of analyte or titrand[3] to determine concentration. The volume of titrant reacted is called titration volume</span>