The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609
Answer:
ones analog and ones digital.
Explanation:
The difference between the two are that one loses quality but is easier to transfer, however digital takes longer to transfer, however this makes the quality the same.
freezer and refrigerator too cold for most bacteria to grow .oven too hot for bacteria to survive
Answer:
Final pH of the solution = 5.46
Explanation:
The detailed step is shown in the attachment.