<em><u>Answer and Explanation:</u></em>




<em><u>For % of N2 gas:
</u></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Are you referring to DNA?
it's B Cell wall
please mark me as brainliest