Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Solution :
a). 
This compound is known as sulfur trioxide.
The molecular shape of sulfur trioxide is trigonal planer.
And the bond angle is 120°.
b). 
This compound is known as Nitrous oxide. Here, nitrogen is in the center. There is no lone pair around the nitrogen atom and it forms two sigma bonds with the other two atoms.
It is linear in shape.
The bond angle between them is 180°.
c). 
This compound is known as the Dichloromethane.
The molecular shape of the compound is tetrahedral.
The bond angles is 120°
the answer is 133
because thats how the water is
I’m pretty sure it’s B since ones charge the neutral while ones is positive, it’s an obvious difference as well/
There are two kinds of forces, or attractions, that operate in a molecule—intramolecularand intermolecular. Let's try to understand this difference through the following example.

Figure of towels sewn and Velcroed representing bonds between hydrogen and chlorine atoms
We have six towels—three are purple in color, labeled hydrogen and three are pink in color, labeled chlorine. We are given a sewing needle and black thread to sew one hydrogen towel to one chlorine towel. After sewing, we now have three pairs of towels: hydrogen sewed to chlorine. The next step is to attach these three pairs of towels to each other. For this we use Velcro as shown above.
So, the result of this exercise is that we have six towels attached to each other through thread and Velcro. Now if I ask you to pull this assembly from both ends, what do you think will happen? The Velcro junctions will fall apart while the sewed junctions will stay as is. The attachment created by Velcro is much weaker than the attachment created by the thread that we used to sew the pairs of towels together. A slight force applied to either end of the towels can easily bring apart the Velcro junctions without tearing apart the sewed junctions.
Exactly the same situation exists in molecules. Just imagine the towels to be real atoms, such as hydrogen and chlorine. These two atoms are bound to each other through a polar covalent bond—analogous to the thread. Each hydrogen chloride molecule in turn is bonded to the neighboring hydrogen chloride molecule through a dipole-dipole attraction—analogous to Velcro. We’ll talk about dipole-dipole interactions in detail a bit later. The polar covalent bond is much stronger in strength than the dipole-dipole interaction. The former is termed an intramolecular attraction while the latter is termed an intermolecular attraction.