The ratio of output force to the input force is generally the mechanical advantage of the machine.
Answer:
None
Explanation:
An scale is the factor by which actual features on ground are enlarged or reduced for representing on a plane. There are different kinds of scales:
- Verbal scale use of words to represent scale information on the map. The distance or linear units are used for depicting this scale on the map. For example: 1 inch = 1 Kilo meter.
- Fractional scale uses the numbers or values for showing the scale instead of words. As the name says, it is represented using a fraction or ratio. Example: 1: 10,000 or 1/10,000
- In large scale more details are shown in a map, however, less area coverage will be shown in a single map as the scale is large and more details are given. Example: 1:500
- Small scale is exactly opposite to the large scale, less details are shown as magnification is not enough, however a large amount of area can be shown in a single map. Example: 1:25,000
- A graphic scale is a bar that has been calibrated to show map distances. On maps that have been reduced or enlarged the original ratio and written scales are incorrect, since the relationship between map distance and real world distance has been altered, graphic scale is enlarged or reduced to the same extent as the map, this makes it the right option.
I hope you find this information useful and interesting! Good luck!
The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:
3.536*10^-6 C
Explanation:
The magnitude of the charge is expresses as Q = CV
C is the capacitance of the capacitor
V is the voltage across the capacitor
Get the capacitance
C = ε0A/d
ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m
A is the area = 0.2m²
d is the plate separation = 0.1mm = 0.0001m
Substitute
C = 8.84 x 10-12 * 0.2/0.0001
C = 1.768 x 10-8 F
Get the potential difference V
Using the formula for Electric field intensity
E = V/d
2.0 × 10^6 = V/0.0001
V = 2.0 × 10^6 * 0.0001
V = 2.0 × 10^2V
Get the charge on each plate.
Q = CV
Q = 1.768 x 10-8 * 2.0 × 10^2
Q = 3.536*10^-6 C
Hence the magnitude of the charge on each plate should be 3.536*10^-6 C