Answer:
I can't draw but you could draw 2 electrons in the first orbit and 3 electrons in the second orbit.
Explanation:
Answer : The partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
Explanation :
The partial pressure of
= 
The partial pressure of
= 
The partial pressure of
= 

The balanced equilibrium reaction is,

Initial pressure 1.0×10⁻² 2.0×10⁻⁴ 2.0×10⁻⁴
At eqm. (1.0×10⁻²-2p) (2.0×10⁻⁴+p) (2.0×10⁻⁴+p)
The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


The partial pressure of
at equilibrium = (2.0×10⁻⁴+(-1.99×10⁻⁴) )= 1.0 × 10⁻⁶
Therefore, the partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>
Answer: glass is not considered as solute.
Extra's:
A solute is a substance that gets dissolved in a solvent. ... The solutes in air are oxygen, argon, and carbon dioxide gas, as well as water vapour.
Sugar is a solute in the solvent water. Sugar is one of the most soluble solutes in water.
Also solute is a powder that can be dissolved in solvent like water. here baking soda is a solute.
The standard ambient temperature and pressure are
Temperature =298 K
Pressure = 1atm
The density of gas is 1.5328 g/L
density = mass of gas per unit volume
the ideal gas equation is
PV = nRT
P = pressure = 1 atm
V = volume
n = moles
R= gas constant = 0.0821 Latm/mol K
T = 298 K
moles = mass / molar mass
so we can write
n/V = density / molar mass
Putting values



Thus molar mass of gas is 37.50g/mol