The smallest particle of an element that still retains the chemical properties of it is an atom.
3Mg + N₂= Mg₃N₂
n(Mg)=12,2g÷<span>24,4g/mol=0,5mol-limiting reagent
</span>n(N₂)=5,16g÷28g/mol=0,18mol
n(Mg₃N₂):n(Mg)=1:3, n(Mg₃N₂)=0,166mol, m(Mg₃N₂)=0,166·101,2=16,8g.
%(N)= 2·Ar(N)÷Mr(Mg₃N₂) = 2·14÷101,2=27,66%=0,2766
%(Mg) = 3·Ar(Mg)÷Mr(Mg₃N₂)= 3·24,4÷101,2=72,34% or 100% - 27,66%= 72,34%.
Answer:
Lithium chloride is a white solid hygroscopic soluble in water.
<u>Answer:</u> The pH of resulting solution is 8.7
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:

Molarity of TRIS acid solution = 0.1 M
Volume of solution = 50 mL
Putting values in above equation, we get:

Molarity of TRIS base solution = 0.2 M
Volume of solution = 60 mL
Putting values in above equation, we get:

Volume of solution = 50 + 60 = 110 mL = 0.11 L (Conversion factor: 1 L = 1000 mL)
- To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=pK_a+\log(\frac{[\text{TRIS base}]}{[\text{TRIS acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7BTRIS%20base%7D%5D%7D%7B%5B%5Ctext%7BTRIS%20acid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of TRIS acid = 8.3
![[\text{TRIS acid}]=\frac{0.005}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20acid%7D%5D%3D%5Cfrac%7B0.005%7D%7B0.11%7D)
![[\text{TRIS base}]=\frac{0.012}{0.11}](https://tex.z-dn.net/?f=%5B%5Ctext%7BTRIS%20base%7D%5D%3D%5Cfrac%7B0.012%7D%7B0.11%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of resulting solution is 8.7