Answer:
The amount left after 49.2 years is 3mg.
Explanation:
Given data:
Half life of tritium = 12.3 years
Total mass pf tritium = 48.0 mg
Mass remain after 49.2 years = ?
Solution:
First of all we will calculate the number of half lives.
Number of half lives = T elapsed/ half life
Number of half lives = 49.2 years /12.3 years
Number of half lives = 4
Now we will calculate the amount left after 49.2 years.
At time zero 48.0 mg
At first half life = 48.0mg/2 = 24 mg
At second half life = 24mg/2 = 12 mg
At 3rd half life = 12 mg/2 = 6 mg
At 4th half life = 6mg/2 = 3mg
The amount left after 49.2 years is 3mg.
I can’t see the picture for some reason
Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />
The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct did not give the results described and is denoted as option A.
<h3>What is Thomson “plum-pudding” model?</h3>
This model was proposed by J.J Thomson in which referred an atom as a sphere of positive charge, and negatively charged electrons are embedded in it to balance the total positive charge.
This model was incorrect and the Rutherford atomic model was adopted in which he described the electrons orbits about a tiny positive nucleus.
The nucleus contains protons and neutrons instead thereby making it the correct choice.
Read more about Atom here brainly.com/question/6258301
#SPJ1
The options include the following:
a.The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct.
b.The Rutherford experiment was useful in determining the nuclear charge on the atom.
c.Milikan’s oil-drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron.
d.The electric discharge tube proved that electrons have a negative charge
Answer: There is 842.54 grams of sodium carbonate are produced when 5.3 moles of sodium phosphate reacts with aluminum carbonate.
Explanation:
Chemical equation depicting reaction between sodium phosphate and aluminum carbonate is as follows.

As this equation contains same number of atoms on both reactant and product side. So, this equation is a balanced equation.
According to the equation, 2 moles of sodium phosphate is giving 3 moles of sodium carbonate.
Therefore, sodium carbonate formed by 5.3 moles of sodium phosphate is as follows.

As number of moles is the mass of substance divided by its molar mass. So, mass of sodium carbonate ( molar mass = 105.98 g/mol) is as follows.

Thus, we can conclude that there is 842.54 grams of sodium carbonate are produced when 5.3 moles of sodium phosphate reacts with aluminum carbonate.