Answer:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Explanation:
When aqueous sugar (sucrose) react with water in the presence of yeast, the following products are obtained as shown in the equation below:
C12H22O11(aq) + H2O(l) —> C2H5OH(aq) + CO2(g)
Now, we shall balance the equation as follow:
There are a total of 24 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 4 in front of C2H5OH as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + CO2(g)
There are a total of 9 atoms of C on the right side and 12 atoms on the left side. It can be balance by putting 4 in front of CO2 as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Now the equation is balanced.
Answer:
physical
Explanation:
no chemical reaction is happening
Yes. Racist it will make it harder to move almost like ooblek
Answer:
1,085g of water
Explanation:
If we have the value 4520kj is because the question is related to Energy and heat capacity. In this case, the law and equation that we use is the following:
Q= m*C*Δt where;
Q in the heat, in this case: 4520kj
m is the mas
Δt= is the difference between final-initial temperature (change of temperature), in this exercise we don´t have temperatura change.
In order to determine the mass, I will have the same equation but finding m
m= Q/C*Δt without m=Q/C
So: m= 4,520J/4.18J/g°C
m= 1,0813 g
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.