Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Define
v = volume of a drop per second, cm³/s
The time taken to fill 200 cm³ is 1 hour.
Let V = 200 cm³, the filled volume.
Let t = 1 h = 3600 s, the time required to fill the volume.
Therefore,

The average volume of a single drop is approximately 0.0556 cm³.
Answer: 0.0556 cm³
Answer:
<em>1,378.9ms²</em>
Explanation:
Given the following
Distance S = 70.6m
Time t = 0.32secs
Initial velocity = 0m/s
Required
Acceleration
Using the equation of motion
S = ut+1/2at²
Substitute
70.6 = 0+1/2a(0.32)²
70.6 = 0.0512a
a = 70.6/0.0512
a = 1,378.9
<em>Hence the acceleration is 1,378.9ms²</em>
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
People who have been struck by lightning do not carry an electrical charge and can be touched is True.
heat lightning is lightning flashes in the sky that do not have the accompanying sound of thunder so false just like the others