Answer:
The correct answer is <u>option (A) that is KEA > KEB .</u>
Explanation:
Let us calculate -
If the object is straighten up and inclined plane , the work done is


The change in kinetic energy is ,

At the top of the inclined plane , the velocity is zero
So,


From the work energy theorem , we have
in case of friction , so


For object A-

For object B


Thus , larger mass is going to mean less total work and a lower kinetic energy .
From the above results , we get

<u>Therefore , option A is correct .</u>
Answer:
(a) 161.57 N
(b) 0.958 m/s^2
Explanation:
Force applied, F = 220 N
mass of crate, m = 61 kg
μ = 0.27
(a) The magnitude of the frictional force,
f = μ N
where, N is the normal reaction
N = m x g = 61 x 9.81 = 598.41 N
So, the frictional force, f = 0.27 x 598.41
f = 161.57 N
(b) Let a be the acceleration of the crate.
Fnet = F - f = 220 - 161.57
Fnet = 58.43 N
According to newton's second law
Fnet = mass x acceleration
58.43 = 61 x a
a = 0.958 m/s^2
Thus, the acceleration of the crate is 0.958 m/s^2.
K.E = 1/2 mv²
800 = 1/2 ×12 ×v²
800 = 6 v²
800 / 6 = v²
= 133.4 =v²
√133.4 = √v²
11.5 = v²
I hope this answer is correct.
Explanation:
given solution
h=45m v^2=u^2+2gh
g=10m/s^2 v^2=0^2+2×10m/s^2×45m
vi=0 v^2=900m^2/s^2
Answer:
I don't think your appendix can explode because you ate too much honestly. It's not even possible to eat so much that your appendix explodes, and if you're feeling any pain it definitely isn't because your appendix is about to explode, believe me. Also you could just type it into the internet, that'd be a much faster solution.