Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Each hemisphere has four sections, called lobes: frontal, parietal, temporal and occipital. Each lobe controls specific functions. For example, the frontal lobe controls personality, decision-making and reasoning, while the temporal lobe controls, memory, speech, and sense of smell.
<h2>Answer: C) 1s²2s²2p⁶</h2>
<h3>Explanation:</h3>
A noble gas has 8 electrons between the p and s orbitals of the outer shell. Helium is the exception because it only has two electrons.
<h3> ∴ 1s²2s²2p⁶ is the noble gas (neon)</h3>
Answer: HCl+NaHCO₃=NaCl+CO₂+H₂O
Explanation: