The products will be 
<h3>Chemical reactions</h3>
Zn is higher than hydrogen in the reactivity series. Thus, it will be able to displace hydrogen from the acid.
The equation of the reaction becomes: 
Hydrogen gas is released as a result. In fact, it is one of the ways of preparing hydrogen gas in the laboratory.
More on chemical reactivity can be found here: brainly.com/question/9621716
#SPJ1
Answer:

Explanation:
2NO₂ ⇌ N₂O₄
E/mol·L⁻¹: 0.058 0.012
K_{\text{eq}} = \dfrac{\text{[N$_{2}$O$_{4}$]}}{\text{[NO$_{2}$]$^{2}$}} = \dfrac{0.012}{0.058^{2}} = \mathbf{3.6}
\\\\
\text{The $K_{\text{eq}}$ value would be $\boxed{\mathbf{3.6}}$}
Answer: 39 electrons
Explanation: Subtract 79 by 40 to get the atomic number (amount of protons) which is 39. The number of electrons must be the same as the number of protons if it's not an ionic compound so the amount of electrons is the same amount of protons.
Answer:
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
When a substance burns we talk about a combustion reaction. When combustion is complete the products are carbon dioxide and water, like in this case. The equation is:
C₄H₁₀(l) + O₂(g) ⇄ CO₂(g) + H₂O(g)
First, we balance the element with the largest stoichiometric coefficient (C).
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + H₂O(g)
Then, we balance H because it is in just 1 compound on each side.
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Finally, we balance O.
C₄H₁₀(l) + 6.5 O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Since we want the smallest whole numbers, we multiply all coefficients by 2.
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)