Answer:

Explanation:
The formula for molality is:

There are 0.210 moles of KBr and 0.075 kilograms of pure water.

Substitute the values into the formula.

Divide.

The molality is <u>2.8 moles per kilogram</u>
Well it's an alkali metal if that's what you're asking<span />
Answer:
The answer to your question is: SiCl₄
Explanation:
Data
amount of Si 1.71 g
amount of Cl 8.63 g
MW Si = 28 g
MW Cl = 35.5
Process (rule of three)
For Si For Cl
28 g of Si ------------------ 1 mol 35.5 g of Cl --------------- 1 mol
1.71g of Si --------------- x 8.63 g of Cl -------------- x
x = 1.71 x 1 / 28 = 0.06 mol x = 8.63 x 1 / 35.5 = 0.24 mol
Now, divide both results by the lowest of them.
Si = 0.06 mol / 0.06 = 1 molecule of Si Cl = 0.24 / 0.06 = 4 molecules of Cl
Finally
Si₁ Cl₄ or SiCl₄
Democritus was the first to propose the idea of the atom. He said the atom was just this tiny, solid sphere. However, he used no scientific evidence to support his claim, so a guy named John Dalton did some experimenting and basically backed up Democritus' claim with evidence. Then, a guy named J.J. Thompson came along and said the atom was not solid and that is consisted of tiny negatively charged particles(electrons) and he came up with the Plum Pudding model which is just a tiny sphere with a punch of random scattered dots in it. After that, Ernest Rutherford did experiments and found that the tiny sphere is made up of mostly empty space with a tiny, dense, positively charged sphere inside of it, and the negatively charged particles just randomly float around it. Neils Bohr then said that the electrons take specific, circular, evenly spaced paths. Then, finally, we come to the Quantum Mechanical Model which is the one accepted today. This model basically vetos Bohr's idea and has a nucleus inside of an electron cloud, which is where the electrons are found.