Answer: 4.7432 L
Explanation:
Use stoichiometry: .4235 mol CuCl2 (1 mol I2 / 2 mol CuCl2)(22.4 L / 1 mol I2) = 4.7432 L :)
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.
Option 2: 12.0 L of
at STP.
The standard pressure and temperature values are 1 atm and 273.15 K.
Using the ideal gas equation, number of moles of gas can be calculated which is as follows:
PV=nRT...... (1)
Here, P is pressure, V is volume, n is number of moles, R is gas constant and T is temperature.
Also, in 1 mole of any gas there are
molecules of the gas. This is known as Avogadro's number and denoted by symbol 
Thus,

Equation (1) can be rewritten as follows:

On rearranging,

Here, all the other terms are constant except volume, thus, gas with volume equal to the volume of
will have same number of molecules.
Volume of
gas and
gas is same thus,
will have same total number of molecules as
gas.