The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
Answer:
Boiling- 212° F melting- 32°F
Explanation:
Hey there!:
From the given data ;
Reaction volume = 1 mL , enzyme content = 10 ug ( 5 ug in 2 mg/mL )
Enzyme mol Wt = 45,000 , therefore [E]t is 10 ug/mL , this need to be express as "M" So:
[E]t in molar = g/L * mol/g
[E]t = 0.01 g/L * 1 / 45,000
[E]t = 2.22*10⁻⁷
Vmax = 0.758 umole/min/ per mL
= 758 mmole/L/min
=758000 mole/L/min => 758000 M
Therefore :
Kcat = Vmax/ [E]t
Kcat = 758000 / 2.2*10⁻⁷ M
Kcat = 3.41441 *10¹² / min
Kcat = 3.41441*10¹² / 60 per sec
Kcat = 5.7*10¹⁰ s⁻¹
Hence kcat of xyzase is 5.7*10¹⁰ s⁻¹
Hope that helps!
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.