Answer:
3.834 m/s
Explanation:
h = 0.750 m
vx = 5 m/s
Let the initial vertical velocity is vy.
Final vertical velocity is zero
use third equation of motion along y axis
v^2 = vy^2 - 2 x g x h
0 = vy^2 - 2 x 9.8 x 0.75
vy^2 = 14.7
vy = 3.834 m/s
Answer:
104
Explanation:
U = Energy stored in the solenoid = 6.00 μJ = 6.00 x 10⁻⁶ J
i = current flowing through the solenoid = 0.4 A
L = inductance of the solenoid
Energy stored in the solenoid is given as
U = (0.5) L i²
6.00 x 10⁻⁶ = (0.5) L (0.4)²
L = 75 x 10⁻⁶
Inductance is given as
l = length of the solenoid = 0.7 m
N = number of turns
r = radius = 5.00 cm = 0.05 m
Area of cross-section is given as
A = πr²
A = (3.14) (0.05)²
A = 0.00785 m²
Inductance is given as


N = 73
Winding density is given as
density = n = 
n = 
n = 104
Newton's 2nd law of motion: Force = (mass) x (acceleration)
If you want to move a 7-kg object with an acceleration of 4 m/s²,
then you will need to push it with (7 x 4) = 28 newtons of force.
Answer: Heat current through the insulator=196W
Electric power= 196W
Explanation: Given: Kglass = 0.040W/m
Temperature of inside glassTi=175°C
Temperature of outside glass To= 35°C
Area=1.4m^2 , L= 4×10^-2
Heat current(H)= K ×A× (Ti - To)/L
Substituting the values into the equation
H = 0.04 × K × 1.4 ×(175-35)/4×10^-2
H= 196W.
The electric power = Heat current =196W
The electric power is the magnitude of heat current
0.6764*10^-10m
Explanation:
Using E= hc/wavelength
(4.14x10^-15)x(3.0x10^8)/(65x10^-12)=0.1911x10^5 eV=19.1 keV
So subtract the calculated energy from the given energy of scattered photons
9.11-0.75=18.36 keV
To find wavelength
Wavelength= hc/ E
[(4.14x 10^-15)x (3.0x10^8)]/(18.36*10^3) =0.6764^-10 m