Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
The answer to this problem is 11.6m
Answer:
a. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.
Explanation:
It is given that a student performed an experiment where he dropped a nickel metal in to HCl solution. He observed the reaction and performed a splint test in the test tube that is filled with a gas which is formed while Nickle is dropped into the solution of HCl.
But the experiment that the student performed was incorrect. He must have observed the popping sound when the splint was placed in the test tube.
When the splint was added to the gas splint flared up. The hydrogen gas pops out when exposed to the flame.

Thus the correct option is (a).
The basic building block of matter is the atom.
Answer:
add 7.5L of water
Explanation:
M1×V1=M2×V2
M is molarity, V is volume
0.7 × 10 = 0.4 × V2
V2= 17.5L
vol. of water to add= 17.5 - 10 = 7.5L