global winds move warm air toward the poles
Acceleration= velocity/time
1.1/2.7=0.41
The acceleration is .41 m/s^2
(a) 
The change in potential energy of the electron is given by:

where
is the magnitude of the electron's charge
is the magnitude of the electric field
d = 520 m is the distance through which the electron has moved
Substituting into the equation, we find

(b) 78 kV
The potential difference the electron has moved through is given by

where
is the magnitude of the electric field
d = 520 m is the distance through which the electron has moved
Substituting into the equation, we find

The time required by the car to stop is 4.916 sec.
Since the car is moving with the constant deceleration we can apply the first equation of motion to calculate the time required by the car to stop.
The first equation of motion is given as
V=u+at
Here, V=final speed of the car=0 mi/h as the car stops
u =initial speed of the car=55 mi/hr=24.58 m/s
a= acceleartion =-5 m/s^2 (here negative sign indicates for deceleration)
Now applying the values in the first equation
V=u+at
0=24.58-5*t
t=4.916 sec
Therefore the car will stops in 4.916 sec.