There are some standard numbers that help us describe the structure of an atom and help us categorize them. Those are the atomic number, the mass number and the numbers of electrons in an atom (or ion). Atoms are electrically neutral, hence they have the same number of protons as electrons. If an atom has a charge and has thus become an ion, it is because electrons joined it or left. For example in this case, since the ion has +2 charge, 2 electrons left it and thus the ion has 4 electrons (2 electrons less than its protons). The mass number is the sum of the protons and neutrons of an atom (that are in the nucleus). In this case, this yields a mass number of 13 for this ion. The atomic number of an atom (or ion) is the total number of protons in the nucleus. Protons do not leave the nucleus except for radioactive reactions and thus the atomic number of an atom (or ion) does not change in chemical reactions. In this case, the ion has an atomic number of 6.
Moles are an estimation of the smallest unit of the molecules and the atoms in a sample. The moles of ammonium nitrate in a sample are 0.5010 moles.
<h3>What are moles?</h3>
Moles are calculated by dividing the mass of the substance in gm by that of the molar mass in gram per mole.
Given.
Mass of ammonium nitrate = 40.10 gm
The molar mass of ammonium nitrate = 80. 0432 g/mol
Moles of ammonium nitrate are calculated as:

Therefore, moles of ammonium nitrate present is option d. 0.5010 moles.
Learn more about moles here:
brainly.com/question/2396149
Answer:
d. 8 moles of H2O on the product side
Explanation:
Hello,
In this case, we need to balance the given redox reaction in acidic media as shown below:
![MnO_4^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O\\\\2Cl^{1-}\rightarrow Cl_2^0+2e^-\\\\2*[(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O]\\\\5*[2Cl^{1-}\rightarrow Cl_2^0+2e^-]\\\\\\\\2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10e^- \rightarrow 2Mn^{2+}+8H_2O\\\\10Cl^{1-}\rightarrow 5Cl_2^0+10e^-\\](https://tex.z-dn.net/?f=MnO_4%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5C%5C%5C%5C2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5C%5C%5C%5C2%2A%5B%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5D%5C%5C%5C%5C5%2A%5B2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5D%5C%5C%5C%5C%5C%5C%5C%5C2%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B16H%5E%2B%2B10e%5E-%20%5Crightarrow%202Mn%5E%7B2%2B%7D%2B8H_2O%5C%5C%5C%5C10Cl%5E%7B1-%7D%5Crightarrow%205Cl_2%5E0%2B10e%5E-%5C%5C)
Then, we add the half reactions:

Thereby, we can see d. 8 moles of H2O on the product side.
Best regards.
Answer:
10.5
Explanation:
well we added together so thats the result
Answer:
<h2>volume = 3.63 mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
Since we are finding the volume
Making volume the subject we have
<h3>

</h3>
From the question
mass = 63.6 g
Density = 17.5 g/mL
Substitute the values into the above formula and solve for the volume
That's
<h3>

</h3>
We have the final answer as
<h3>volume = 3.63 mL</h3>
Hope this helps you