1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
3 years ago
5

Active young galaxies with huge black holes at their centers are called irregular galaxies true or false

Physics
1 answer:
boyakko [2]3 years ago
5 0
The answer is True. Hope it helped
You might be interested in
How do you find the capacitance in this?
Lostsunrise [7]

Answer:

Explanation:

parallel capacitances add directly

Series capacitances add by reciprocal of sum of reciprocals.

Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]

Ceq = [ C ] + [C / 2] + [C / 3]

Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]

Ceq = 11C/6

3 0
2 years ago
Come all ruj-jxgn-qua​
Shalnov [3]

Answer:

this app is for solving doubts not sending links ok

5 0
3 years ago
How do determine which is Y2, Y1, X2, and X1 on a graph. <br><br> And how do find rise over run.
fredd [130]
One point will be X1,Y1 and the other will be X2,Y2. It does not matter which is which except that X1 and Y1 have to be the same point and X2 and Y2 have to be the same point. For example, let's say you were given (2,3) and (6,8). No matter which point is X1,Y1 and the other is X2,Y2, the slope will still be 5/4. 

The rise is the change in y from one point to the other. The run would be the change in x from one point to the other.
7 0
3 years ago
A block of mass 0.08 kg is pushed against a spring with spring constant k=31 N/m. The spring is compressed 0.15 meters from its
ELEN [110]

Answer:

1.11 meters

Explanation:

As the spring is compressed, elastic potential energy is built up in the spring. The total elastic potential energy can be found using the following formula

Ep = 1/2 x k x s²          

where k = 31 N/m  (spring constant)

s = 0.15 m  (compression)

Ep = 3.4875 J

When the block of mass is released, the elastic potential energy (Ep) is converted to kinetic energy (Ek). From this we can find the initial velocity of the mass of block after release

Ek = 1/2 x m x u²    

   

where Ek = Ep = 3.4875J

m = 0.08 kg  (mass of block)

u = unknown (initial velocity)

u = 2.9526 m/s

Now that we know the initial velocity we need to find the deceleration of the mass of block due to friction. We will first find the force of friction from the following formula

F = ∪ x m x g          

where F = unknown (frictional force)

∪ = 0.4   (coefficient of friction)

m = 0.08 kg   (mass of block)

g = 9.81 m/s² (acceleration due to gravity)

F = 0.31392 N

From this force we calculate the deceleration based on the following formula

F = m x a                  

where F = 0.31392   (frictional force)

m = 0.08 kg   (mass of block)

a = unknown  (acceleration)

a = -3.924 m/s²      -

*the negative sign is due to this value being deceleration

Now to find the total distance traveled we use the equation for motion

v² = u² + 2as            

where  v = 0 (final velocity)

u = 2.9526 m/s (initial velocity

a = -3.924 m/s² (deceleration due to friction)

s = unknown (distance traveled)

s = 1.11 meters

3 0
3 years ago
A speeding motorist traveling down a straight highway at 100 km/h passes a parked police car. It takes the police constable 1.0
Lubov Fominskaja [6]

Answer:

t = 7.5 s

Explanation:

The distance traveled by the car at the time of meeting of the two cars must be the same. First, we calculate the distance traveled by the police car. For that we use 2nd equation of motion. Here, we take the time when police car starts to be reference. So,

s₁ = Vi t + (0.5)gt²

where,

s₁ = distance traveled by police car

Vi = Initial Velocity = 0 m/s

t = time taken

Therefore,

s₁ = (0 m/s)(t) + (0.5)(9.8 m/s²)t²

s₁ = 4.9 t²

Now, we calculate the distance traveled by the car. For constant speed and time to be 1 second more than the police car time, due to car starting time, we get:

s₂ = Vt = V(t + 1)

where,

s₂ = distance traveled by car

V = Velocity of car = (100 km/h)(1000 m/1 km)(1 h/ 3600 s) = 27.78 m/s

Therefore,

s₂ = 27.78 t + 27.78

Now, we know that at the time of meeting:

s₁ = s₂

4.9 t² = 27.78 t + 27.78

4.9 t² - 270.78 t - 27.78 = 0

solving the equation and choosing the positive root:

t = 6.5 s

since, we want to know the time from the moment car crossed police car. Therefore, we add 1 second of starting time in this.

t = 6.5 s + 1 s

<u>t = 7.5 s</u>

6 0
3 years ago
Other questions:
  • An athlete always runs before taking a jump . why?
    6·1 answer
  • For every action
    5·1 answer
  • Is it proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinde
    7·1 answer
  • Why does the area around the equator stay the same temperature year-round
    8·1 answer
  • Which of the following would describe a length that is 2.0×10^-3 of a meter? a: 2.0 kilometers
    14·1 answer
  • I forgot how to breath
    15·2 answers
  • If the resultant of two velocity vectors of equal magnitude is also of the same magnitude, then which statement must be correct?
    5·1 answer
  • A message is sent from the Galileo spacecraft orbiting Jupiter to earth at a distance of 928,000,000km. If it took the signal 51
    5·2 answers
  • What are the importance of regulare<br>health examination.​
    12·1 answer
  • How are babies formed?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!