Answer:
y = y₀ (1 - ½ g y₀ / v²)
Explanation:
This is a free fall problem. Let's start with the ball that is released from the window, with initial velocity vo = 0 and a height of the window i
y = y₀ + v₀ t - ½ g t²
y = y₀ - ½ g t²
for the ball thrown from the ground with initial velocity v₀₂ = v
y₂ = y₀₂ + v₀₂ t - ½ g t²
in this case y₀ = 0
y₂2 = v t - ½ g t²
at the point where the two balls meet, they have the same height
y = y₂
y₀ - ½ g t² = vt - ½ g t²
y₀i = v t
t = y₀ / v
since we have the time it takes to reach the point, we can substitute in either of the two equations to find the height
y = y₀ - ½ g t²
y = y₀ - ½ g (y₀ / v)²
y = y₀ - ½ g y₀² / v²
y = y₀ (1 - ½ g y₀ / v²)
with this expression we can find the meeting point of the two balls
Answer:
<em>7.2 N</em>
Explanation:
length of wire L = 240 m
current I = 500 A
field strength B = 3 x 10^-5 T
magnetic force on a current carrying conductor F is given as
F = BILsin∅
The wires are perpendicular with field therefore sin∅ = sin 90° = 1
therefore,
F = BIL = 3 x 10^-5 X 500 X 240 = 3.6 N
<em>If the wire exists between this two transmission lines, then total magnetic force on the wire = 2 x 3.6 = 7.2 N</em>
Since the bridge and all segments of it are static, the sum of the torques acting on any portion of the bridge you choose is zero for any pivot <span>point you may choose. See if you can find a rigid portion of the bridge and a wisely chosen pivot to which you can apply this powerful fact.
</span>Consider the triangular portion shown in bold and let x be the pivot. (This choice eliminates the torques
due to the tensions in the beams that attach at
point x.) Find the torques on this left hand
triangle (which can be considered a solid piece
because of the connections). Remember that
counterclockwise torque is positive. Assume
that the horizontal segment above is being
stretched, so that the force that the tension in
this segment exerts on the bold triangle is
directed to the right.
Express the torque in terms of T, L , and Fp.
Answer in terms of T and L :
Tt = (TL.sqrt 3) / 2
Summation Tx = -LFp - T sqrt[L^2 - (L/2)^2]
The negative value of the tension shows that the segment is actually under a compressible load. <span />
Answer:
A body is abandoned and it is observed that after 4 s it touches the ground. How high was it released?
Answer: i think c
Explanation:QA: “What is ordinary glass made of ?”
Glass is mostly silica, or silicon dioxide, present as quartz in many types of sand. Pure silica forms a highly transparent glass, but has a very high melting or softening temperature, around 1700°C. Even at such high temperatures it is highly viscous and difficult to work. Its use is largely confined to applications requiring high transparency to ultra-violet and infra-red radiation, stability at elevated temperatures or low thermal expansion coefficient.
“Ordinary glass” windows and drinking vessels are typically made from soda-lime glass, containing silica with around 25% sodium, calcium and other oxides, which together reduce the softening temperature to roughly 500–600°C