Answer
Radius of the wheel r = 2.1 m
Moment of inertia I = 2500 Kg m²
Tangential force applied F = 18 N
Time interval t = 16 s
Initial angular speed ω1 = 0
Final angular speed ω2 = ?
Let α be the angular acceleration.
Torque applied τ = Iα
F r = Iα
Angular acceleration α = F r/I
= 
= 0.015 rad/s²
(a)From rotational kinematic relation
Final angular speed ω₂ = ω₁ + αt
= 0 + (0.015 rad/s^2 * 16 s)
= 0.24 rad/s
(b) Work done W = 0.5 Iω₂² - (1/2)Iω₁²
= 0.5*( 2500 Kg m²)(0.24 rad/s)^2 - 0
= 72 J
(c) Average power supplied by the child P = W/t = 
= 4.5 watt
Answer: 
Explanation:
The de Broglie wavelength
is given by the following formula:
(1)
Where:
is the Planck constant
is the momentum of the atom, which is given by:
(2)
Where:
is the mass of the electron
is the velocity of the electron
This means equation (2) can be written as:
(3)
Substituting (3) in (1):
(4)
Now, we only have to find
:
>>> This is the de Broglie wavelength of the electron
The answer of this question is 0.6m/s