Answer: 40.650406504065 or 40 minutes and 39 seconds.
Explanation:
1 k = 1000m
race = 10000m
runner time = 10000 / 4.1
runner time = 2439.0243902439024 seconds
runner time = 2439.0243902439024/60 = 40.650406504065 or 40 minutes and 39 seconds.
The answer would be 54 m/s as the maximum speed
Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
If a negatively charged object is used to charge a neutral object by induction, then the neutral object will acquire a positive charge. And if a positively charged object is used to charge a neutral object by induction, then the neutral object will acquire a negative charge.
The moon's gravity pulls at the Earth, causing predictable rises and falls in sea levels known as tides. To a much smaller extent, tides also occur in lakes, the atmosphere, and within Earth's crust.