An amplifier.
Electrical energy provided to an amplifier is converted into sound energy as it is "fed" or provided to the speaker portion of an amplifier.
Explanation:
Red, green, and blue are therefore called additive primaries of light. ... When you block two lights, you see a shadow of the third color—for example, block the red and green lights and you get a blue shadow. If you block only one of the lights, you get a shadow whose color is a mixture of the other two.
First, your definition of a shadow is incorrect. A shadow is an area that receives less light than its surroundings because a specific source of light is blocked by whatever is "casting" the shadow. Your example of being outside reveals this. The sky and everything around you in the environment (unless you are surrounded by pitch black buildings) is sending more than enough light into your shadow, to reveal the pen to your eyes. The sky itself diffuses the sunlight everywhere, and the clouds reflect plenty of light when they are not directly in front of the Sun.
If you are indoors and have two light bulbs, you can throw two shadows at the same time, possibly of different darknesses, depending on the brightness of the light bulbs.
It can take a lot of work to get a room pitch black. One little hole or crack in some heavy window curtains can be enough to illuminate the room. There are very few perfectly dark shadows.
Answer:

Explanation:
Given that,
Initial velocity, u = -5 m/s
Final velocity, v = -22 m/s
Time, t = 3s
We need to find the acceleration of the car. The formula of it is given by :
Acceleration,

So, the acceleration of the car is
.
Answer:
The refractive index of the outer coating is 1.52.
Explanation:
Refractive index of interior part, n' = 1.97
critical angle, C = 50.4°
Let the refractive index of the coating is n.
Use the Snell's law,

Answer:
Written in Python
def energyvector(mass):
c = 2.9979 * 10**8
energy = mass * c ** 2
print(round(energy,2))
Explanation:
This line defines the function
def energyvector(mass):
This line initializes the speed of light
c = 2.9979 * 10**8
This line calculates the corresponding energy
energy = mass * c ** 2
This line prints the calculated energy
print(round(energy,2))