This question doesn't appear to be complete
Answer:
1. True WA > WB > WC
Explanation:
In this exercise they give work for several different configurations and ask that we show the relationship between them, the best way to do this is to calculate each work separately.
A) Work is the product of force by distance and the cosine of the angle between them
WA = W h cos 0
WA = mg h
B) On a ramp without rubbing
Sin30 = h / L
L = h / sin 30
WB = F d cos θ
WB = F L cos 30
WB = mf (h / sin30) cos 30
WB = mg h ctan 30
C) Ramp with rubbing
W sin 30 - fr = ma
N- Wcos30 = 0
W sin 30 - μ W cos 30 = ma
F = W (sin30 - μ cos30)
WC = mg (sin30 - μ cos30) h / sin30
Wc = mg (1 - μ ctan30) h
When we review the affirmation it is the work where there is rubbing is the smallest and the work where it comes in free fall at the maximum
Let's review the claims
1. True The work of gravity is the greatest and the work where there is friction is the least
2 False. The job where there is friction is the least
3 False work with rubbing is the least
4 False work with rubbing is the least
Answer:
20 hertz of frequency produced.
Explanation:

Here we will find frequency and period should be in second, here given: 0.05 seconds
using the formula:


Explanation:
Below is an attachment containing the solution.
Answer:
Twice.
Explanation:
The momentum of an object is given by :
p = mv
Where
m is mass and v is the velocity
If the mass of the ball were doubled, m'=2m and v'=v=3 m/s
New momentum,
p'=m'v'
p'=2m × v
p'=2mv
or
p'=2p
So, the new momentum becomes twice the initial momentum.