1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
3 years ago
12

A wave creates a strong undertow

Physics
1 answer:
Hitman42 [59]3 years ago
8 0
Hey there! 

Answer: A swell

A wave which creates a strong undertow is called a swell. These types of waves are also known as <span>surface gravity waves. 

Thank you!</span>
You might be interested in
What will the stopping distance be for a 2,000-kg car if -2,000 N of force are applied when the car is traveling 20 m/s?
astraxan [27]

Answer is B- 200 m

Given:

m (mass of the car) = 2000 Kg

F = -2000 N

u(initial velocity)= 20 m/s.

v(final velocity)= 0.

Now we know that

<u>F= ma</u>

Where F is the force exerted on the object

m is the mass of the object

a is the acceleration of the object

Substituting the given values

-2000 = 2000 × a

a = -1 m/s∧2

Consider the equation

<u>v=u +at</u>

where v is the initial velocity

u is the initial velocity

a is the acceleration

t is the time

0= 20 -t

t=20 secs


s = ut +1/2(at∧2)

where s is the displacement of the object

u is the initial velocity

t is the time

v is the final velocity

a is the acceleration

s= 20 ×20 +(-1×20×20)/2

<u>s= 200 m</u>


3 0
3 years ago
Read 2 more answers
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns
Tasya [4]

Complete Question

How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns.

The output from the secondary coil is  12 V

Answer:

The value  is  N_s  =  21 \  turns

Explanation:

From the equation we are told that

   The input voltage is  V_{in}  = 120 \ V

   The number of turns of the primary coil is N_p =  210 \  turn

    The output from the secondary is V_o =  12V

From the transformer equation

   \frac{N_p}{V_{in}}  =\frac{N_s}{V_o}

Here N_s is the number of turns in the secondary coil

=> N_s  =  \frac{N_p}{V_{in}}  *  V_s

=>N_s  =  \frac{210}{120}  *  12

=>N_s  =  21 \  turns

4 0
3 years ago
A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
klemol [59]
I think the answer for the question above its            b 1.2
6 0
3 years ago
Read 2 more answers
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
QUESTION 1
lisabon 2012 [21]

Answer:

2 * 10^5 pa

Explanation:

Pressure = Force / Area

Each thigh bone has a cross sectional area of 10cm²

Both thigh bones :

2 * 10cm² = 20cm²

To m² : 20 * (0.01)²

20 * 0.0001 m² = 0.002 m²

Force = mass * acceleration due to gravity(g)

g = 10m/s² ;

Force = 40 * 10 = 400N

Pressure = 400 N / 0.002 m²

Pressure = 200,000 N/m² = 2 * 10^5 pascal

8 0
2 years ago
Other questions:
  • A roofer drops a nail that hits the ground traveling at 26 m/s. How fast was the nail traveling 1 second before it hits the grou
    15·1 answer
  • Two boxes on a horizontal plane with coefficient of friction µ are connected by a massless string. The left-hand box has mass m
    7·1 answer
  • What is the difference between a battery losing charge (discharging) and a capacitor losing charge (discharging)?
    8·1 answer
  • How reactive is an atom of Sodium(Na) and why?
    12·1 answer
  • A person in a kayak starts paddling, and it accelerates from 0 to 0.61 m/s in a distance of 0.39 m. If the combined mass of the
    14·1 answer
  • At a certain place, Earth's magnetic field has magnitude B =0.703 gauss and is inclined downward at an angle of 75.4° to the hor
    13·1 answer
  • Please Help ASAP!!!
    6·1 answer
  • Definición de variable en física
    12·1 answer
  • Please solve no.g <br>Anyone!???​
    15·1 answer
  • A metal coin has a volume of 835 mm3 and a mass of 5.67 g. What is the density of the coin?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!