The formula for momentum is p = mv, where p is momentum, m is mass, and v is velocity.
To solve for p, plug in 750 kg for mass and 30 m/s for velocity. • is a multiplication symbol
p = mv
p = 750kg • 30m/s
p = 22500 kg•m/s
As the speed of the plunger increases, the wavelength of the waves decreases. The greater the frequency, the smaller the wavelength. The smaller the frequency, the greater the wavelength. When we increase the speed of the plunger, the frequency of the waves also increases, and just like with the size of the ball, it’s the speed of the plunger and the frequency of the waves are directly related.
The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11
Answer:
The acceleration of the wallet is 
Explanation:
Given that,
Radius of purse r= 2.30 m
Radius of wallet r'= 3.45 m
Acceleration of the purse 
We need to calculate the acceleration of the wallet
Using formula of acceleration

Both the purse and wallet have same angular velocity








Hence, The acceleration of the wallet is 