Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
Hello!
When finding the chemical formula of a compound, we will need to find the charges of each element/bond.
Looking at our period table, sodium has a +1 charge, written as Na 1+, and sulfate has a charge of -2, and it is written as SO4 2-.
Now, we need to make the charges equivalent. To do this, we need to "criss-cross" the charges. This means that sodium will need to additional atoms to make the charges equal, and sulfate will need one.
Therefore, the chemical formula for sodium sulfate is: Na2SO4.
Include:
- Adding cleanser makes the paperclip fall through the water to the base of the dish.
- Soap is a surfactant.
- Surfactants lessen the surface pressure of a fluid.
- The surface strain of water is the thing that upheld the paper cut.
Q = mcΔθ
67.5 = m x 0.45 x (28.5 - 21.5)
M = 67.5 / 3.15
= 21.4 g