This is what I got:
Net force in the Y direction:
ΣFy = T1 - T2
F = ma
ma = T1 - T2
Isolate for T2
ma - T1 = -T2
Multiply by -1
T1 - ma = T2
100 - (3)(2) = T2
100 - 6 = T2
T2 = 94 N
Answer:
current in series is 2.50 mA
current in parallel is 13.51 mA
Explanation:
given data
voltage = 5 V
resistors R1 = 1.5 kilo ohms
resistors R2 = 0.5 kilo ohms
to given data
current flow
solution
current flow in series is express as here
current = voltage / resistor .................1
put here all value in equation 1
current = 5 / (1.5 + 0.5)
current = 5 / 2.0
so current = 2.50 mA
and
current flow in parallel is express as
current = voltage / resistor ....................2
put here all value in equation 2
current = 5 / (1/ (1/1.5 + 1/0.5))
current = 5 / 0.37
so current = 13.31 mA
Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.