Answer:
v = 98.75 km/h
Explanation:
Given,
The distance driver travels towards the east, d₁ = 135 km
The time period of the travel, t₁ = 1.5 h
The halting time, tₓ = 46 minutes
The distance driver travels towards the east, d₂ = 215 km
The time period of the travel, t₁ = 2 h
The average speed of the vehicle before stopping
v₁ = d₁/t₁
= 135/1.5
= 90 km/h
The average speed of vehicle after stopping
v₂ = d₂/t₂
= 215/2
= 107.5 km/h
The total average velocity of the driver
v = (v₁ +v₂) /2
= (90 + 107.5)/2
= 98.75 km/h
Hence, the average velocity of the driver, v = 98.75 km/h
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C
<u>Answer :</u>
(a) d = 0.25 m
(b) d = 0.5 m
<u>Explanation :</u>
It is given that,
Frequency of sound waves, f = 686 Hz
Speed of sound wave at
is, v = 343 m/s
(1) Perfectly destructive interference occurs when the path difference is half integral multiple of wavelength i.e.
........(1)
Velocity of sound wave is given by :




Hence, when the speakers are in phase the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive is 0.25 m.
(2) For constructive interference, the path difference is integral multiple of wavelengths i.e.
( n = integers )
Let n = 1
So, 


Hence, the smallest distance between the speakers for which the interference of the sound waves is maximum constructive is 0.5 m.
Answer:
mesa
Explanation:

A mesa is a flat-topped mountain or hill. It is a wide, flat, elevated landform with steep sides. ... Spanish explorers of the American southwest, where many mesas are found, used the word because the tops of mesas look like the tops of tables.
Answer:

Explanation:
From frequency of oscillation

Initially with the suspended string, the above equation is correct for the relation, hence

where k is force constant and m is the mass
When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional

Employing f2/ f1, we have
