Answer:
Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.
Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.
Mathematically in a plane AB the shearing stresses are given by

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
LAOD = 6669.86 N
Explanation:
Given data:
width
thickness 
crack length 2c = 0.5 mm at centre of specimen

stress intensity factor = k will be


we know that

[c =0.5/2 = 2.5*10^{-4}]
K = 0.1724 Mpa m^{1/2} for 1000 load
if
then load will be




LAOD = 6669.86 N
Answer:
The answer is "
and 157.5 MPa".
Explanation:
In point A:
The strength of its products with both the grain dimension is linked to this problem. This formula also for grain diameter of 310 MPA is represented as its low yield point

Here y is MPa is low yield point, x is mm grain size, and k becomes proportionality constant.
Replacing the equation for each condition:

People can get yo = 275 MPa with both equations and k= 15.5 Mpa
.
To substitute the answer,

In point b:
The equation is 
equation is:

by putting the above value in the formula we get the
value that is= 157.5 MPa