Answer:
(1) Cl₂ is the limiting reactant.
(2) 8.18 g
Explanation:
- 2Na(s) + Cl₂(g) → 2NaCl(s)
First we <u>convert the given masses of reactants into moles</u>, using their <em>respective molar masses</em>:
- Na ⇒ 12.0 g ÷ 23 g/mol = 0.522 mol Na
- Cl₂ ⇒ 5.00 g ÷ 70.9 g/mol = 0.070 mol Cl₂
0.070 moles of Cl₂ would react completely with (2 * 0.070) 0.14 moles of Na. There are more Na moles than that, so Na is the reactant in excess while Cl₂ is the limiting reactant.
Then we <u>calculate how many moles of NaCl are formed</u>, <em>using the limiting reactant</em>:
- 0.070 mol Cl₂ *
= 0.14 mol NaCl
Finally we <u>convert NaCl moles into grams</u>:
- 0.14 mol NaCl * 58.44 g/mol = 8.18 g
Answer:
3.3765 Mol O2
Explanation:
There is no work for this problem
Answer:
Hydrogen and Cobalt
Explanation:
Break up each individual element
- Hope that helps! Please let me know if you need further explanation.
Answer:
136.63 °C
Explanation:
ΔTb=Tb solution - Tb pure
Where; Tb pure = 133.60°C
molar mass of solute = 121.14 g/mol
number of moles of solute; 52.2g/121.14 g/mol = 0.431 moles
molality = 0.431 moles/350 * 10^-3 = 1.23 molal
Then;
ΔTb = Kb * m * i
Kb = 2.46°C kg mol^-1
m = 1.23 molal
i = 1
ΔTb = 2.46 * 1.23 * 1
ΔTb = 3.03 °C
Hence;
Tb solution = ΔTb + Tb pure
Tb solution = 3.03 °C + 133.60°C
Tb solution = 136.63 °C