Answer:
hellooooo :) ur ans is 33.5 m/s
At time t, the displacement is h/2:
Δy = v₀ t + ½ at²
h/2 = 0 + ½ gt²
h = gt²
At time t+1, the displacement is h.
Δy = v₀ t + ½ at²
h = 0 + ½ g (t + 1)²
h = ½ g (t + 1)²
Set equal and solve for t:
gt² = ½ g (t + 1)²
2t² = (t + 1)²
2t² = t² + 2t + 1
t² − 2t = 1
t² − 2t + 1 = 2
(t − 1)² = 2
t − 1 = ±√2
t = 1 ± √2
Since t > 0, t = 1 + √2. So t+1 = 2 + √2.
At that time, the speed is:
v = at + v₀
v = g (2 + √2) + 0
v = g (2 + √2)
If g = 9.8 m/s², v = 33.5 m/s.
Answer:
Induced emf in the coil, E = 0.157 volts
Explanation:
It is given that,
Number of turns, N = 100
Diameter of the coil, d = 3 cm = 0.03 m
Radius of the coil, r = 0.015 m
A uniform magnetic field increases from 0.5 T to 2.5 T in 0.9 s.
Due to this change in magnetic field, an emf is induced in the coil which is given by :


E = -0.157 volts
Minus sign shows the direction of induced emf in the coil. Hence, the induced emf in the coil is 0.157 volts.
The answer is Golgi apparatus.
HOPE THIS HELPS!
Homeostasis: this is the body’s way of creating an internal state of equilibrium.
Answer: 2. 2.0*10^2 W
Explanation:
Power = Work/Time
Power = (2.0*10^3) Joules/10 seconds
Power = 2.0*10^2 Watts