The answer is
Neither the speed of light in air is going to stay the same no matter what wavelength or frequency
Answer:
1.23 m/s
Explanation:
The kinetic energy of the sprinter is:
KE = 0.5 * m(s) * v²
KE = 0.5 * 77 * 7.5²
KE = 2165.63 J
If the KE of the sprinter and the KE of the elephant are equal, hence:
2165.63 = 0.5 * m(e) * v²
2165.63 = 0.5 * 2850 * v²
=> v² = 1.52
v = √(1.52)
v = 1.23 m/s
Answer:
v₀ = 13.24 m / s
Explanation:
Let's use Newton's second law to find the average acceleration during the crash
F = m a
. a = F / m
a = 8000/73
a = 109.59 m / s²
Now we can use the kinematic equations to find the initial velocity, since when the velocity stops it is zero (v = 0)
v² = v₀² - 2 a x
v₀² = 2 a x
v₀ = √ 2 a x
v₀ = √ (2 109.59 0.80)
v₀ = 13.24 m / s
Answer:
they both evaperated bye heat
Explanation:
No it is not balanced because there are four oxygen atoms in H2SO4 while there 5 oxygen atoms in the reactants side. There are also more hydrogen atoms on the reactants side. To make it balanced remove the 2 in front of H2O. :)