Answer:
P = 33.6 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = forces [N]
m = mass = 14 [kg]
a = acceleration = 6 [m/s²]
![F = 14*6\\F = 84 [N]](https://tex.z-dn.net/?f=F%20%3D%2014%2A6%5C%5CF%20%3D%2084%20%5BN%5D)
In the second part of this problem we must find the work done, where the work in physics is known as the product of force by distance, it is important to make it clear that force must be applied in the direction of movement.

where:
W = work [J]
F = force = 84 [N]
d = displaciment = 40 [m]
![W = 84*40\\W = 3360 [J]](https://tex.z-dn.net/?f=W%20%3D%2084%2A40%5C%5CW%20%3D%203360%20%5BJ%5D)
Finally, the power can be calculated by the relationship between the work performed in a given time interval.

where:
P = power [W]
W = work = 3360 [J]
t = time = 100 [s]
Now replacing:
![P=3360/100\\P=33.6[W]](https://tex.z-dn.net/?f=P%3D3360%2F100%5C%5CP%3D33.6%5BW%5D)
The power is given in watts
Answer:

t'=1.1897 μs
Explanation:
First we will calculate the velocity of micrometeorite relative to spaceship.
Formula:

where:
v is the velocity of spaceship relative to certain frame of reference = -0.82c (Negative sign is due to antiparallel track).
u is the velocity of micrometeorite relative to same frame of reference as spaceship = .82c (Negative sign is due to antiparallel track)
u' is the relative velocity of micrometeorite with respect to spaceship.
In order to find u' , we can rewrite the above expression as:


u'=0.9806c
Time for micrometeorite to pass spaceship can be calculated as:

(c = 3*10^8 m/s)


t'=1.1897 μs
The answer is <span>Encourage private ownership Profit motives and promote competition and monopoly regulate companies sell food and regulate pollution</span>
Explanation:
A wavefront is the long edge that moves, for example, the crest or the trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v. These are drawn at a time t later, so that they have moved a distance s = vt.