Answer:
the final potential energy of this system is 3U0/10
Explanation:
We are given
charge at left end and another test charge at point p
Potential energy is given by =
where k is electrostatics constant = 
Q1 = first charge , Q2= test charge
R= distance between charges
potential at point p
U0 = k*Q1*Q2 /3 ⇒ kq1q2 = 3U0 ..............1
now the test charge moves to point R
using Pytahgoreou theorem
R(distance) =
= 10
New Potential energy
U1 = kq1*q2 / 10
substituting kq1q2 = 3U0 from 1
U1 = 3U0/10
So this is the final potential energy of this system.
It's false i hope this helps :)
Answer:
C. while the magnet is moving
Explanation:
Electromagnetic induction implies the production of electric current by mere movement of a magnet with respect to a coil or wire.
In the given question, current would be induced in the wire only when the magnet moves. That is either when the magnet is pushed into a wire, or when pulled out. But no current would flow through the wire when the magnet is left there for a while.
The current is induced because of the motion involved. Thus, the appropriate option is C.