Answer:
They are the same (assuming there is no air friction)
Explanation:
Take a look at the picture.
When the first ball (the one thrown upward) gets to the point marked as A, the speed will has the exact same value V but the velocity will now point downward (just like the second ball).
So if you think about it, the first ball, from point A to the ground, will behave exactly like the second ball (same initial speed, same height).
That is why the speeds will be the same when they reach the ground.
Answer:
1a) 857143 m
1b) 414 m
2a)
2b)
3) the medium of air has a wavelength of 0.334 m, the medium of water has a wavelength of 1.493 m, and the medium of 5.130 m.
Explanation:
Question 1a)
Given the velocity/speed, and frequency of the wave, the length can be calculated using these two quantites.
[ λ = v / f ] wavelength = <u>v</u>elocity of the wave / <u>f</u>requency of the wave in Hz.
Since 3 × 10^8 × ms^-1 is the velocity, and 350Hz is the frequency.
Anything to the negative power is reciprocated. i.e ms^-1 = m/s.
The wavelength is 300000000m/350Hz = 857142.8571428..... m ≈ 857143 m
Question 1b) Given that the frequency of the second wave in water is 1% of the first wave, and the speed of the second wave is 1450ms^-1
Therefore the second wave has a frequency of 1% of 3.5 = 350/100 Hz = 3.5 Hz
The wavelength is found using the same
formula: wavelength = 1450m/3.5Hz = 414.2857142857.... m ≈ 414 m
Question 2a)
Question 2b)
Question 3) Remember, the speed of sound of the medium = frequency of the medium × wavelength of the medium.
Therefore the wavelength of the medium = speed of sound of the medium / frequency of the medium. This has a similar correlation to the wavelength formula. We are given that all these mediums have a frequency of 1KHz = 1000Hz, where So the wavelength of each medium =
Question 4)
Answer:
It can be seen from the operation of pin-hole camera, formation of shadows and eclipse.
Explanation:
The phenomenon of light traveling in a straight line is known as rectilinear propagation of light.
One this evidence can be seen from the operation of pin-hole camera, which depends on rectilinear propagation of light
Also two natural effects that result from the rectilinear propagation of light are the formation of Shadows and Eclipse.
Kepler’s three law is the answer. Kepler’s 3 is the amount
of time it takes to orbit the sun is related to size and distance. Kepler’s 3 is one of the planetary motion and
can be stated as all planets move in elliptical orbits, having the sun sits at
one of the foci.