Answer:
Explanation:
A gives off a visible gaseous product when the two are mixed.
The others all talk about physical properties like phase changes and densities.
Answer:
6.45 joules
Explanation:
energy=10×(55-50)×0.129
=1.29×5
=6.45 J
hope this helps
please like and Mark as brainliest
Answer:
Following are the responses to the given choices:
Explanation:
- The RBC crenation is implied through NaCl by 2,67 percent(m/v) because that solution becomes hypertonic to RBC because of the water within the RBC that passes externally towards the outskirts. RBC thus shrinks.
- 1.13% (m/v), because the low concentration or osmotic that all this solution shows is hypotonic regarding RBC because of the water which has reached the resulting swelling in RBC.
- Distilled H2 implies hemolytic distillation.
- Glucose is indicated by crenation at 8.69 percent (m/v).
- 5.0% (m/v) glucose and 0.9% (m/v) (Crenation is indicated by NaCl.v)
Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
Explanation:
Cations are positively charged ions with fewer electrons than protons. To partake in reaction, metals lose electrons to achieve a stable octet configuration. It has lost valence electrons and wold have a positive charge associated with it.
Potassium is a group 1 element. A metal.
Potassium has 1 valence electron so it loses the valence electron to form a stable octet.
A potassium ion has a positive charge and therefore cannot be an anion but is a cation.
The group number pretty much denotes the number of valence electrons.
Group 1 = 1
Group 2 = 2
Group 17 = 7
Group 18 = 8