This dilution problem uses the equation
M
a
V
a
=
M
b
V
b
M
a
= 6.77M - the initial molarity (concentration)
V
a
= 15.00 mL - the initial volume
M
b
= 1.50 M - the desired molarity (concentration)
V
b
= (15.00 + x mL) - the volume of the desired solution
(6.77 M) (15.00 mL) = (1.50 M)(15.00 mL + x )
101.55 M mL= 22.5 M mL + 1.50x M
101.55 M mL - 22.5 M mL = 1.50x M
79.05 M mL = 1.50 M
79.05 M mL / 1.50 M = x
52.7 mL = x
59.7 mL needs to be added to the original 15.00 mL solution in order to dilute it from 6.77 M to 1.50 M.
I hope this was helpful.
I would say compression or the absence of heat because heating a liquid makes it a gas<span />
Answer:
measuring the consumption of the products and the rate of conversion of products to reagents
Explanation:
It must be taken into account that the reaction rate also depends on the presence of a catalyst, since these advance the rate of the reaction.
Answer : The correct option is, (b) +115 J/mol.K
Explanation :
Formula used :

where,
= change in entropy
= change in enthalpy of vaporization = 40.5 kJ/mol
= boiling point temperature = 352 K
Now put all the given values in the above formula, we get:



Therefore, the standard entropy of vaporization of ethanol at its boiling point is +115 J/mol.K
Answer:
C
Explanation:
Large chlorine atoms can not fit within the atoms of boron