Answer:
F' = (4/9)F
Explanation:
The electrostatic force between two charged objects is given by Coulomb's Law:
F = kq₁q₂/r² -------------------- equation (1)
where,
F = Electrostatic Force
k = Coulomb's Constant
q₁ = magnitude of first charge
q₂ = magnitude of second charge
r = distance between charges
Now, when the charges and distance altered as follows:
q₁' = 2q₁
q₂' = 2q₂
r' = 3r
Then,
F' = kq₁'q₂'/r'²
F' = k(2q₁)(2q₂)/(3r)²
F' = (4/9)kq₁q₂/r²
using equation (1):
<u>F' = (4/9)F</u>
Answer:
Magnetic field, 
Explanation:
Given that,
Velocity of electron, 
It enters a region of space where perpendicular electric and a magnetic fields are present.
Magnitude of electric field, 
We need to find the magnetic field will allow the electron to go through the region without being deflected.
Magnetic force on the electron,
.......(1)
Electric force on the electron, F = q E........(2)
From equation (1) and (2) we get:



B = 0.0002 T
or

Hence, this is the required solution.
First, it makes your skin feel cooler<span> when it's wet. And when it </span>evaporates<span> it removes some heat. But sweat will only </span>evaporate<span> in an environment where there isn't much</span>water<span> in the air. In a place with high humidity, there're already lots of </span>water<span> molecules in the air. </span>
Answer: D
Explanation: :) Just took the quizz