Answer:
answer number C is the correct answer for this
According to <span>Gay-Lussac's Law the temperature and Pressure are directly proportional to each other if the amount and volume of given gas are kept constant.
Mathematically for initial and final states it is expressed as,
P</span>₁ / T₁ = P₂ / T₂ ----- (1)
Data Given;
P₁ = 1.5 atm
T₁ = 35 °C + 273 = 308 K
P₂ = ?
T₂ = 0 °C + 273 = 273 K
Solving Eq. 1 for P₂,
P₂ = P₁ T₂ / T₁
Putting values,
P₂ = (1.5 atm × 273 K) ÷ 308 K
P₂ = 1.32 atm
Result:
As the temperature is decreased so the pressure also decreases from 1.5 atm to 1.32 atm. Therefore the bag will contract.
Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm
Answer:
Molarity of acid, Ca = Cb*Vb*A/Va*B
Explanation:
Using H2SO4 as acid, the reaction is as follow:
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
Volume of acid = Va; Volume of base = Vb, Molar concentration of acid = Ca; Molar concentration of base = Cb; Molarity of acid = A and Molarity of base = B
Ca*Va/Cb*Vb =A/B
∴ Ca = Cb*Vb*A/Va*B
You didn’t show the cylinder containing water, so I created one that you can use as a model (see image).
The water level was originally at 37 mL.
Then you added the ball, and it displaced its volume of water.
The new volume reading is 52 mL, so
Volume of ball = volume of displaced water = 52 mL – 37 mL = 15 mL.