Answer:
676 ft
Explanation:
Minimum sight distance, d_min
d_min = 1.47 * v_max * t_total where v_max is maximum velocity in mi/h, t_total is total time
v_max is given as 50 mi/h
t_total is sum of time for right-turn and adjustment time=8.5+0.7=9.2 seconds
Substituting these figures we obtain d_min=1.47*50*9.2=676.2 ft
For practical purposes, this distance is taken as 676 ft
Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

Answer:
with a square cross section and length L that can support an end load of F without yielding. You also wish to minimize the amount the beam deflects under load. What is the free variable(s) (other than the material) for this design problem?
a. End load, F.
b. Length, L.
c. Beam thickness, b
d. Deflection, δ
e. Answers b and c.
f. All of the above.
Answer:
Entropy generation==0.12 KW/K
Explanation:



Mass flow rate= 


mass flow rate=
So by putting the values
Mass flow rate=2.97 kg/s
So entropy generation=(2.97)(0.0412)
=0.12 KW/K
True.
An intrinsic semiconductor is a pure semiconductor. At room temperature it behaves as an insulator because it only has a few free and hollow electrons due to thermal energy.
In an intrinsic semiconductor there are also electron fluxes and gaps, although the total current resulting is zero. This is because the action of thermal energy produces free electrons and gaps in pairs, so there are as many free electrons as there are gaps with which the total current is zero.