1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
12

A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 m

L of the base. Assuming complete neutralization of the acid,
1) What was the normality of the acid solution?
2) What was the molarity of the acid solution?
Engineering
1 answer:
natima [27]3 years ago
4 0

Answer:

a. 0.4544 N

b. 5.112 \times 10^{-5 M}

Explanation:

For computing the normality and molarity of the acid solution first we need to do the following calculations

The balanced reaction

H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O

NaOH\ Mass = Normality \times equivalent\ weight \times\ volume

= 0.3200 \times 40 g \times 21.30 mL \times  1L/1000mL

= 0.27264 g

NaOH\ mass = \frac{mass}{molecular\ weight}

= \frac{0.27264\ g}{40g/mol}

= 0.006816 mol

Now

Moles of H_2SO_4 needed  is

= \frac{0.006816}{2}

= 0.003408 mol

Mass\ of\ H_2SO_4 = moles \times molecular\ weight

= 0.003408\ mol \times 98g/mol

= 0.333984 g

Now based on the above calculation

a. Normality of acid is

= \frac{acid\ mass}{equivalent\ weight \times volume}

= \frac{0.333984 g}{49 \times 0.015}

= 0.4544 N

b. And, the acid solution molarity is

= \frac{moles}{Volume}

= \frac{0.003408 mol}{15\ mL \times  1L/1000\ mL}

= 0.00005112

=5.112 \times 10^{-5 M}

We simply applied the above formulas

You might be interested in
The mass flow rate in a 4.0-m wide, 2.0-m deep channel is 4000 kg/s of water. If the velocity distribution in the channel is lin
IceJOKER [234]

Answer:

V = 0.5 m/s

Explanation:

given data:

width of channel =  4 m

depth of channel = 2 m

mass flow rate = 4000 kg/s = 4 m3/s

we know that mass flow rate is given as

\dot{m}=\rho AV

Putting all the value to get the velocity of the flow

\frac{\dot{m}}{\rho A} = V

V = \frac{4000}{1000*4*2}

V = 0.5 m/s

4 0
3 years ago
Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
Rashid [163]

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

6 0
2 years ago
Based on the graphs of stress-strain from the V-MSE site, how would you characterize the general differences between polymers an
Pepsi [2]

Answer:

Option A

Explanation:

Alloys are metal compounds with two or more metals or non metals to create new compounds that exhibit superior structural properties. Alloys have high level of hardness that resists deformation thereby making it less ductile compared to polymers. This is due to the varying difference in the chemical and physical characteristics of the constituent metals in the alloy.

6 0
3 years ago
Two different fuels are being considered for a 2.5 MW (net output) heat engine which can operate between the highest temperature
sveta [45]

Answer:

If the heat engine operates for one hour:

a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.

b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.

In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.

Explanation:

The Carnot efficiency is obtained as:

\epsilon_{car}=1-\frac{T_c}{T_H}

Where T_c is the atmospheric temperature and T_H is the maximum burn temperature.

For the case (B), the efficiency we will use is:

\epsilon_{b}=0.4\epsilon_{car}

The work done by the engine can be calculated as:

W=\epsilon Q=\epsilon H_v\cdot m_{fuel} where Hv is the heat value.

If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

m=\frac{P\cdot t}{\epsilon H_v}

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

TC=m\cdot c

8 0
3 years ago
Write multiple if statements. If car_year is 1969 or earlier, print "Few safety features." If 1970 or later, print "Probably has
Slav-nsk [51]

Answer:

Explanation along with code and output results is provided below.

C++ Code:

#include <iostream>

using namespace std;

int main()

{

   int year;

   cout<<"Enter the car model year."<<endl;

   cin>>year;    

  if (year<=1969)

  {

cout<<"Few safety features."<<endl;

  }

else if (year>=1970 && year<1989)

{

cout<<"Probably has seat belts."<<endl;

}

else if (year>=1990 && year<1999)

{

cout<<"Probably has antilock brakes."<<endl;

}

else if (year>=2000)

{

cout<<"Probably has airbags."<<endl;

   }

   return 0;

}

Explanation:

The problem was to print feature messages of a car given its model year.

If else conditions are being used incorporate the logic. The code has been tested with several inputs and got correct output results.

Output:

Enter the car model year.

1961

Few safety features.

Enter the car model year.

1975

Probably has seat belts.

Enter the car model year.

1994

Probably has antilock brakes.

Enter the car model year.

2005

Probably has airbags.

5 0
4 years ago
Other questions:
  • A petrol engine produces 20 hp using 35 kW of heat transfer from burning fuel. What is its thermal efficiency, and how much powe
    14·1 answer
  • Consider a cylindrical specimen of some hypothetical metal alloy that has a diameter of 11.0 mm. A tensile force of 1550 N produ
    7·1 answer
  • 8. Explain how a duo-servo brake assembly works to provide great braking ability.
    11·1 answer
  • What is the entropy of a closed system in which 25 distinguishable grains of sand are distributed among 1000 distinguishable equ
    5·2 answers
  • Pascal's law tells us that, pressure is transmitted undiminished throughout an open container. a)- True b) False
    9·1 answer
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
    15·1 answer
  • ───────────────────────────────
    7·1 answer
  • Describe the first case where the power of synthesis was used to solve design problems.
    15·1 answer
  • Which of the following is NOT one of the 3 technology bets we have made?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!