Nope, color change can also occur during a physical change.
To solve this problem it is necessary to use the concepts related to Snell's law.
Snell's law establishes that reflection is subject to

Where,
Angle between the normal surface at the point of contact
n = Indices of refraction for corresponding media
The total internal reflection would then be given by





Therefore the
would be equal to



Therefore the largest value of the angle α is 30.27°
Add 35 to 215. then divide by 25. you should get x=10
Answer:
a) J = F t = 40 * .05 = 2 N-s
b) J = 2 N-s momentum changed by 2 N-s
c) Initial momentum appears to be zero
J = change in momentum = m v2 - m v1 = m v2 = 2 N-s
v2 = J / m = 2 / .057 = 35 m/s
d) if the impulse time was increased and the average force remained the same then the change in momentum would increase with a corresponding increase in velocity attained - note the increase in v2 in part c)
The "penetration of the bullet" is 5 m
<u>Explanation</u>:
A "bullet" with "kinetic energy" of = 400J
A resistive force stops the bullet = 8.00 x 10 N
Work = change in energy
Work = ∆ Kinetic Energy (equation 1)
Work =
(equation 2)
From equations 1 and 2 we have,
= ∆ Kinetic Energy
Where
,
Kinetic Energy = 400 J
F = 8.00 x 10 N
(8.00 x 10 N) d = 400 J
(80 N) d = 400 J

d = 5 m
The penetration of the bullet is 5 m