Answer:
Explanation:
Range of projectile R = 20 m
formula of range
R = u² sin2θ / g
u is initial velocity , θ is angle of projectile
putting the values
20 = u² sin2x 40 / 9.8
u² = 199
u = 14.10 m /s
At the initial point
vertical component of u
= u sin40 = 14.1 x sin 40
= 9.06 m/s
Horizontal component
= u cos 30
At the final point where the ball strikes the ground after falling , its speed remains the same as that in the beginning .
Horizontal component of velocity
u cos 30
Vertical component
= - u sin 30
= - 9.06 m /s
So its horizontal component remains unchanged .
change in vertical component = 9.06 - ( - 9.06 )
= 18.12 m /s
change in momentum
mass x change in velocity
= .050 x 18.12
= .906 N.s
Impulse = change in momentum
= .906 N.s .
It is often revealed <span>at the resolution of the story, when the reader can see how the story ends.</span>
Answer:

Explanation:
Given that:
p = magnitude of charge on a proton = 
k = Boltzmann constant = 
r = distance between the two carbon nuclei = 1.00 nm = 
Since a carbon nucleus contains 6 protons.
So, charge on a carbon nucleus is 
We know that the electric potential energy between two charges q and Q separated by a distance r is given by:

So, the potential energy between the two nuclei of carbon is as below:

Hence, the energy stored between two nuclei of carbon is
.
Answer:
7m/s²
Explanation:
Given parameters:
Velocity at the top = 1m/s
Velocity at the bottom = 36m/s
Time = 5s
Unknown:
Average acceleration = ?
Solution;
Acceleration is the rate of change of velocity with time. It is expressed as;
A = 
v is the velocity at the top
u is the velocity at the bottom
t is the time taken
Now, insert the parameters and solve;
A =
= 7m/s²
Answer:
250 m/min down the road
Explanation:
Velocity is equivalent to speed but it considers the direction of the object. Velocity is also calculated by dividing the distance travelled by time. Therefore,
where d and t are distance and time respectively. Given that d is given as 350 m and t is 1.4 s then by substitution
and the direction is down the road.
Velocity is 250 m/min down the road