1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
3 years ago
13

Develop a power point presentation to which you explain how convection works by using ocean water as an example. In your present

ation, give details about where the water is moving during convection and why it is moving. Describe how water temperature is measured, and how you would measure to show thermal energy transfer.
Physics
1 answer:
Ede4ka [16]3 years ago
4 0
I wonder what is going to change when you can be used for the day and the temperature changes to a substance that you have learned to eat and drink a lot more water and water you have a water.
You might be interested in
1.) an object moves along the x axis, subject to the potential energy shown. The object has a mass of 1.1kg and starts at rest a
MrRa [10]
If I'm not wrong #1 should be C
4 0
3 years ago
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
Sophia is planning on going down an 8-m high water slide. Her weight is 50 N. What is Sophia's Gravitational Potential Energy at
pogonyaev
Gpe = 50 x 8 = 400 Joules
6 0
3 years ago
Someone help me with this please
Elodia [21]

Answer: just do the same thing, but the problems are different

Explanation: try you best

Download pdf
3 0
3 years ago
An electron and a proton are held on an x axis, with the electron at x = + 1.000 m
mixas84 [53]

Answer:

  r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

Explanation:

For this exercise we must use conservation of energy

the electric potential energy is

          U = k \frac{q_1q_2}{r_{12}}

for the proton at x = -1 m

          U₁ =- k \frac{e^2 }{r+1}

for the electron at x = 1 m

          U₂ = k \frac{e^2 }{r-1}

starting point.

        Em₀ = K + U₁ + U₂

        Em₀ = \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}

final point

         Em_f = k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})

   

energy is conserved

        Em₀ = Em_f

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})              

       

        \frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(  \frac{2}{(r_2+1)(r_2-1)} )

we substitute the values

½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ - \frac{1}{20+1} + \frac{1}{20-1} ) = 9 109 (1.6 10-19) ²( \frac{2}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( \frac{1}{r_2^2 -1} )

          2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷     \frac{1}{r_2^2 -1}

          \frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}

          r₂² -1 = (4.443 10⁸)⁻¹

           

          r2 = \sqrt{1 + 2.25 10^{-9}}

          r2 = 1 m

therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m

4 0
3 years ago
Other questions:
  • If the velocity of a body changes from 13 m/s to 30 m/s while undergoing constant acceleration, what's the average velocity of t
    15·2 answers
  • Which is a chemical property of iron?
    9·2 answers
  • A bullet is fired vertically into a 1.40 kg block of wood at rest directly above it. if the bullet has a mass of 29.0 g and a sp
    10·1 answer
  • A 3.0 g aluminum foil ball with a charge of 3.0×10−9C hangs freely from a 1.4 m-long thread. What angle with the vertical the eq
    12·1 answer
  • What is the difference between mass density and weight density?
    6·1 answer
  • A 2.0-kg mass is oscillating about the origin at 24 rad/s. The amplitude of the oscillations is 0.040 m. At what position is the
    9·1 answer
  • A 4kg object is moving at a speed of 5 m/sec.how much kinetic energy does the objects have
    5·1 answer
  • The figure shows the motion of electrons in a wire which is near the North pole of a magnet. The wire will be pushed:
    9·1 answer
  • A 5- kg object experiences forces as shown in the diagram. Which statement best describes the motion of the object
    11·1 answer
  • Would someone just answer this now?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!