1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexus [3.1K]
3 years ago
13

Develop a power point presentation to which you explain how convection works by using ocean water as an example. In your present

ation, give details about where the water is moving during convection and why it is moving. Describe how water temperature is measured, and how you would measure to show thermal energy transfer.
Physics
1 answer:
Ede4ka [16]3 years ago
4 0
I wonder what is going to change when you can be used for the day and the temperature changes to a substance that you have learned to eat and drink a lot more water and water you have a water.
You might be interested in
The diagram shows what happens to a system undergoing an adiabatic process.
posledela
The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
5 0
3 years ago
Read 2 more answers
A competitive go-cart driver is traveling at a speed of 32m/s. He sees a caution flag go up and slows down at a rate of -1.5 m/s
djyliett [7]

Answer:

His final velocity is 15.8 m/s.

Step-by-step explanation:

Given:

Initial velocity of the driver is, u=32 m/s

Acceleration of the driver is, a=-1.5 m/s²

Time taken to reach final velocity is, t=10.8 s.

The final velocity is given using the Newton's equations of motion as:

v=u+at, where, v is the final velocity.

Now, plug in the given values and solve for v.

v=32-1.5(10.8)\\v=32-16.2=15.8\textrm{ m/s}

Therefore, his final velocity is 15.8 m/s.

5 0
2 years ago
10 POINTS AND BRAINLIEST!!!!
Maurinko [17]
The answer is earth.
7 0
3 years ago
Read 2 more answers
A weight of 30.0 N is suspended from a spring that has a force constant of 220 N/m. The system is undamped and is subjected to a
Nimfa-mama [501]

Answer:

F_0 = 393 N

Explanation:

As we know that amplitude of forced oscillation is given as

A = \frac{F_0}{ m(\omega^2 - \omega_0^2)}

here we know that natural frequency of the oscillation is given as

\omega_0 = \sqrt{\frac{k}{m}}

here mass of the object is given as

m = \frac{W}{g}

\omega_0 = \sqrt{\frac{220}{\frac{30}{9.81}}}

\omega_0 = 8.48 rad/s

angular frequency of applied force is given as

\omega = 2\pi f

\omega = 2\pi(10.5) = 65.97 rad/s

now we have

0.03 = \frac{F_0}{3.06(65.97^2 - 8.48^2)}

F_0 = 393 N

6 0
3 years ago
The following table lists the work functions of a few common metals, measured in electron volts. Metal Φ(eV) Cesium 1.9 Potassiu
Citrus2011 [14]

A. Lithium

The equation for the photoelectric effect is:

E=\phi + K

where

E=\frac{hc}{\lambda} is the energy of the incident light, with h being the Planck constant, c being the speed of light, and \lambda being the wavelength

\phi is the work function of the metal (the minimum energy needed to extract one photoelectron from the surface of the metal)

K is the maximum kinetic energy of the photoelectron

In this problem, we have

\lambda=190 nm=1.9\cdot 10^{-7}m, so the energy of the incident light is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{1.9\cdot 10^{-7} m}=1.05\cdot 10^{-18}J

Converting in electronvolts,

E=\frac{1.05\cdot 10^{-18}J}{1.6\cdot 10^{-19} J/eV}=6.5 eV

Since the electrons are emitted from the surface with a maximum kinetic energy of

K = 4.0 eV

The work function of this metal is

\phi = E-K=6.5 eV-4.0 eV=2.5 eV

So, the metal is Lithium.

B. cesium, potassium, sodium

The wavelength of green light is

\lambda=510 nm=5.1\cdot 10^{-7} m

So its energy is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5.1\cdot 10^{-7} m}=3.9\cdot 10^{-19}J

Converting in electronvolts,

E=\frac{3.9\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.4 eV

So, all the metals that have work function smaller than this value will be able to emit photoelectrons, so:

Cesium

Potassium

Sodium

C. 4.9 eV

In this case, we have

- Copper work function: \phi = 4.5 eV

- Maximum kinetic energy of the emitted electrons: K = 2.7 eV

So, the energy of the incident light is

E=\phi+K=4.5 eV+2.7 eV=7.2 eV

Then the copper is replaced with sodium, which has work function of

\phi = 2.3 eV

So, if the same light shine on sodium, then the maximum kinetic energy of the emitted electrons will be

K=E-\phi = 7.2 eV-2.3 eV=4.9 eV

7 0
3 years ago
Other questions:
  • What and where are muscles attached
    9·2 answers
  • An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr
    11·1 answer
  • A uniform ladder of mass m and length L stands on a floor at angle α, leaning against a frictionless wall. The static coefficien
    13·1 answer
  • A solid ball is released from rest and slides down a hillside that slopes downward at an angle 51.0 ∘ from the horizontal. what
    11·1 answer
  • IS THERE A PLASTIC THAT YOU CAN SEE AND BREATHE THROUGH??? SOMEONE PLEASE ANSWER THIS!!!
    14·1 answer
  • A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that th
    6·1 answer
  • 4) A racing car undergoing constant acceleration covers 140 m in 3.6 s. (a) If it’s moving at 53 m/s at the end of this interval
    9·1 answer
  • A car is strapped to a rocket (combined mass = 661 kg), and its kinetic energy is 66,120 J.
    8·1 answer
  • Why do you think it is helpful for the widest part of a leaf to face the sky
    9·1 answer
  • What is the least dense planet in our solar system?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!